1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
| #include "hal_gpio.h" #include "hal_timer.h" #include "hal_uart.h" #include "mpu6050.h" #include "sensor_data_filter.h" #include "units_converter.h" #include "pid_controller.h" #include "state_machine.h" #include "hal_delay.h"
#define SAMPLE_PERIOD_MS 10
#define BALANCE_KP 5.0f #define BALANCE_KI 0.01f #define BALANCE_KD 0.1f #define BALANCE_OUTPUT_LIMIT_MAX 255.0f #define BALANCE_OUTPUT_LIMIT_MIN -255.0f
#define JUMP_KP 0.0f #define JUMP_KI 0.0f #define JUMP_KD 0.0f #define JUMP_OUTPUT_LIMIT_MAX 255.0f #define JUMP_OUTPUT_LIMIT_MIN -255.0f
pid_controller_t balance_pid; pid_controller_t jump_pid; float target_pitch_angle = 0.0f;
void control_loop();
void setup() { gpio_init(); uart_init(115200); timer_init(SAMPLE_PERIOD_MS, control_loop); mpu6050_init(); filter_init();
pid_init(&balance_pid, BALANCE_KP, BALANCE_KI, BALANCE_KD, BALANCE_OUTPUT_LIMIT_MIN, BALANCE_OUTPUT_LIMIT_MAX); pid_init(&jump_pid, JUMP_KP, JUMP_KI, JUMP_KD, JUMP_OUTPUT_LIMIT_MIN, JUMP_OUTPUT_LIMIT_MAX);
timer_start();
uart_putstr("System Initialized!\n"); set_current_state(STATE_IDLE); }
void loop() { state_transition();
switch (get_current_state()) { case STATE_IDLE: gpio_write(LED_PIN, LOW); break; case STATE_BALANCING: gpio_write(LED_PIN, HIGH); break; case STATE_JUMP_PREPARE: gpio_write(LED_PIN, !digitalRead(LED_PIN)); delay_ms(200); break; case STATE_JUMPING: gpio_write(LED_PIN, HIGH); break; case STATE_LANDING: gpio_write(LED_PIN, LOW); break; default: gpio_write(LED_PIN, LOW); break; }
}
void control_loop() { int16_t accel_x_raw, accel_y_raw, accel_z_raw; int16_t gyro_x_raw, gyro_y_raw, gyro_z_raw; mpu6050_read_raw_data(&accel_x_raw, &accel_y_raw, &accel_z_raw, &gyro_x_raw, &gyro_y_raw, &gyro_z_raw);
float accel_x_g, accel_y_g, accel_z_g; float gyro_x_dps, gyro_y_dps, gyro_z_dps; convert_raw_to_phy(accel_x_raw, accel_y_raw, accel_z_raw, gyro_x_raw, gyro_y_raw, gyro_z_raw, &accel_x_g, &accel_y_g, &accel_z_g, &gyro_x_dps, &gyro_y_dps, &gyro_z_dps);
static float roll_angle_deg = 0.0f; static float pitch_angle_deg = 0.0f; complementary_filter_update(accel_x_g, accel_y_g, accel_z_g, gyro_x_dps * M_PI / 180.0f, gyro_y_dps * M_PI / 180.0f, gyro_z_dps * M_PI / 180.0f, SAMPLE_PERIOD_MS / 1000.0f, &roll_angle_deg, &pitch_angle_deg);
switch (get_current_state()) { case STATE_IDLE: pwm_write(MOTOR_PWM_PIN, 0); pid_reset_integral(&balance_pid); break;
case STATE_BALANCING: { float balance_output = pid_compute(&balance_pid, target_pitch_angle, pitch_angle_deg, SAMPLE_PERIOD_MS / 1000.0f);
int motor_pwm_duty = map((int)balance_output, (int)BALANCE_OUTPUT_LIMIT_MIN, (int)BALANCE_OUTPUT_LIMIT_MAX, 0, 255); motor_pwm_duty = constrain(motor_pwm_duty, 0, 255); pwm_write(MOTOR_PWM_PIN, motor_pwm_duty);
uart_putstr("Pitch: "); uart_putfloat(pitch_angle_deg, 2); uart_putstr(", Output: "); uart_putint(motor_pwm_duty); uart_putstr("\n"); break; }
case STATE_JUMP_PREPARE: pwm_write(MOTOR_PWM_PIN, 0); delay_ms(500); set_current_state(STATE_JUMPING); break;
case STATE_JUMPING: { pwm_write(MOTOR_PWM_PIN, 255); delay_ms(200); pwm_write(MOTOR_PWM_PIN, 0); set_current_state(STATE_LANDING); break; }
case STATE_LANDING: delay_ms(500); set_current_state(STATE_BALANCING); break;
default: pwm_write(MOTOR_PWM_PIN, 0); break; } }
|